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Critical Power for AsymptoticConnectivity in Wireless NetworksPiyush GuptaP. R. KumarKEYWORDS: Wireless networks, connectivity, critical power, critical range,continuum percolation.ABSTRACT: In wireless data networks each transmitter's power needs tobe high enough to reach the intended receivers, while generating minimuminterference on other receivers sharing the same channel. In particular, ifthe nodes in the network are assumed to cooperate in routing each oth-ers' packets, as is the case in ad hoc wireless networks, each node shouldtransmit with just enough power to guarantee connectivity in the network.Towards this end, we derive the critical power a node in the network needsto transmit in order to ensure that the network is connected with probabil-ity one as the number of nodes in the network goes to in�nity. It is shownthat if n nodes are placed in a disc of unit area in <2 and each node trans-mits at a power level so as to cover an area of �r2 = (log n+ c(n))=n, thenthe resulting network is asymptotically connected with probability one ifand only if c(n)! +1.1 IntroductionWireless communication systems consist of nodes which share a commoncommunication medium: namely, radio. Signals intended for a receivercause interference at other receiver nodes. This results in reduced signalto noise ratio at the latter receivers, and thus, in the lowering of theirinformation-processing capacity. Hence, it becomes essential to control thetransmitter power such that the information signals reach their intendedreceivers, while causing minimal interference for other receivers sharing thesame channel. To achieve this objective, many iterative power control al-gorithms have been developed (Bambos, Chen and Pottie (1995), Ulukusand Yates (1996) and the references therein).In this paper we look at the problem from a di�erent perspective. Weassume that nodes in the network cooperate in routing each others' datapackets. Examples of such networks are mobile ad hoc networks (Gupta and
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Critical Power for Asymptotic Connectivity in Wireless Networks iiKumar (1996) and Johnson and Maltz (1996)). They are networks formedby a group of mobile nodes which communicate with each other over awireless channel and without any centralized control. In such networks, acritical requirement is that each node in the network has a path to everyother node in the network, i.e., the network is connected. With this in mind,we consider the problem of determining the critical power at which eachnode needs to transmit so as to guarantee asymptotic connectivity of thenetwork.More precisely, we consider the following problem: Let D be a disc in <2having unit area. Let G(n; r(n)) be the network (graph) formed when nnodes are placed uniformly and independently in D, and two nodes i andj can communicate with each other if the distance between them is lessthan r(n). That is, if xk is the location of node k, nodes i and j cancommunicate if kxi � xjk � r(n), where the norm used is the Euclideannorm (i.e., L2-norm). The radius r(n) is usually referred to as the range of anode in G(n; r(n)). Then the problem is to determine r(n) which guaranteesthat G(n; r(n)) is asymptotically connected with probability one, i.e., theprobability that G(n; r(n)) is connected, denoted by PC(n; r(n)), goes toone as n!1. For this problem, we show that if �r2(n) = logn+c(n)n , thenPC(n; r(n))! 1 if and only if c(n)! +1.A related problem that has been considered in the literature is connectivityin Bernoulli graphs: Let B(n; p(n)) be a graph consisting of n nodes, inwhich edges are chosen independently and with probability p(n). Then, ithas been shown that if p(n) = logn+c(n)n , the probability that B(n; p(n)) isconnected goes to one if and only if c(n)! +1 (Theorem VII.3 in Bollob�as(1985)). Even though the asymptotic expression is the same, connectivity inG(n; r(n)) is quite di�erent from connectivity in B(n; p(n)). The event thatthere are links between i and j, and between j and k, is not independentof the event that there is a link between i and k (as, �xing xi, the formeris true given the latter only if j lies in the intersection of two discs ofradius r(n) and centered at i and k, with kxi� xkk � r(n). This has lowerprobability than the probability (�r2(n))2 of the event that there are linksbetween i and j, and j and k ). As it turns out, an entirely di�erent prooftechnique was needed to prove asymptotic connectivity in G(n; r(n)).Another closely related problem considered in the literature is the coverageproblem: Disks of radius a are placed in a unit-area disc D 2 <2 at aPoisson intensity of �, i.e., number of discs having their centers in a setA � D of area jAj is Poisson distributed with mean �jAj. Let V(�; a)denote the vacancy within D, i.e., V(�; a) is the region of D not covered bythe disks. Then it has been shown in Hall (1988) (Theorem 3.11) that120 minn1; (1 + �a2�2)e��a2�o < P (jV(�; a)j > 0)< minn1; 3(1 + �a2�2)e��a2�o : (1.1)
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Critical Power for Asymptotic Connectivity in Wireless Networks iiiNote that (1.1) has more stringent asymptotics on a(n) than our result. If� = n and �a2(n) = logn+log logn+c(n)n , then limn!1 P (jV(n; a(n))j > 0) =0 for c(n)! +1, and limn!1 P (jV(n; a(n))j > 0) � 1=20 for c(n)!�1.Also, note that coverage of D by discs of radius a(n) = r(n) does notguarantee connectivity in G(n; r(n)) (recall r(n) is the range of nodes inG(n; r(n)))). However, a(n) = r(n)=2 does; the corresponding lower boundon r(n) is �r2(n) = 4 logn+log logn+c(n)n for c(n) ! +1, which is muchweaker than the one we obtain. Moreover, since G(n; r(n)) can be con-nected without D being entirely covered by n discs of radius r(n), thisapproach does not lead to any necessary conditions on r(n) for asymptoticconnectivity in G(n; r(n)).Yet another related problem considered is in continuum percolation theory(Kesten (1982), Mesteer and Roy (1996)): Nodes are assumed to be dis-tributed with Poisson intensity � in <2, and two nodes are connected toeach other if the distance between them is less than r. Then the problemconsidered is to �nd a critical value of r such that the origin is connectedto an in�nite-order component. Of course for this to make sense, the nodedistribution process is conditioned on the origin having a node. We will, infact, make use of some results from percolation theory while deriving thesu�cient condition on r(n) for asymptotic connectivity in G(n; r(n)) (cf.Section 3).The rest of the paper is organized as follows. In Section 2 we derive thenecessary condition on r(n) for asymptotic connectivity of G(n; r(n)). Thesu�ciency of this condition is proved in Section 3. We conclude in Section4 with some comments on extensions of the problem considered.2 Necessary Condition on r(n) for ConnectivityIn this section we derive necessary conditions on the radio range of a node inthe network for asymptotic connectivity. In the following, to avoid techni-calities which obscure the main ideas, we will neglect edge e�ects resultingdue to a node being close to the boundary of D. The complete proofs whichtake the edge e�ects into account are given in the Appendix.We will frequently use the following bounds.Lemma 2.1 (i) For any p 2 [0; 1](1� p) � e�p: (1.2)(ii) For any given � � 1, there exists p0 2 [0; 1], such thate��p � (1� p); for all 0 � p � p0: (1.3)If � > 1, then p0 > 0.
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Critical Power for Asymptotic Connectivity in Wireless Networks ivLemma 2.2 If �r2(n) = logn+cn , then, for any �xed � < 1 and for allsu�ciently large n n(1� �r2(n))n�1 � �e�c: (1.4)Proof: Taking the logarithm of the left hand side of (1.4), we getlog(L.H.S. of (1.4)) = logn+ (n� 1) log �1� �r2(n)� :Using the power series expansion for log(1� x),log(L.H.S. of (1.4)) = logn� (n� 1) 1Xi=1 ��r2(n)�ii= logn� (n� 1) 2Xi=1 (logn+ c)iini + E(n)! ;(1.5)where E(n) = 1Xi=3 (logn+ c)iini� 13 1Z2 � logn+ cn �x dx= 13 log� logn+cn � � logn+ cn �x������12� 13 � logn+ cn �2 ; (1.6)for all large n. Substituting (1.6) in (1.5), we getlog(L.H.S. of (1.4)) � logn � (n� 1)� logn+ cn + 5(logn+ c)26n2 �� �c� (logn+ c)2 � (logn + c)n� �c� �;for all su�ciently large n. The result follows by taking the exponent of bothsides and using � = e��. 2Now, let P (k)(n; r(n)); k = 1; 2; : : : denote the probability that a graphG(n; r(n)) has at least one order-k component. By an order-k componentwe mean a set of k nodes which form a connected set, but which are notconnected with any other node. Also, let Pd(n; r(n)) denote the probabilitythat G(n; r(n)) is disconnected.
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Critical Power for Asymptotic Connectivity in Wireless Networks vTheorem 2.1 If �r2(n) = logn+c(n)n , thenlim infn!1 Pd(n; r(n)) � e�c �1� e�c� ; (1.7)where c = limn!1 c(n).Proof: We �rst study the case where �r2(n) = logn+cn for a �xed c. Con-sider P (1)(n; r(n)), the probability that G(n; r(n)) has at least one order-1component. That is, P (1)(n; r(n)) is the probability that G(n; r(n)) has atleast one node which does not include any other node in its range. ThenP (1)(n; r(n)) � nXi=1 P (fi is the only isolated node in G(n; r(n))g)� nXi=1 �P (fi is an isolated node in G(n; r(n))g)� Xj 6=i P (fi and j are isolated nodes in G(n; r(n))g)�� nXi=1 P (fi is isolated in G(n; r(n))g)� nXi=1Xj 6=i P (fi and j are isolated in G(n; r(n))g): (1.8)Neglecting edge e�ects, we getP (fi is isolated in G(n; r(n))g) � (1� �r2(n))n�1;P (fi and j isolated in G(n; r(n))g) � (4�r2(n) � �r2(n))(1� 54�r2(n))n�2+ (1� 4�r2(n))(1 � 2�r2(n))n�2: (1.9)The �rst term on the RHS above takes into account the case where j is ata distance between r(n) and 2r(n) from i. Substituting (1.9) in (1.8), wegetP (1)(n; r(n)) � n(1� �r2(n))n�1 � n(n� 1)�3�r2(n)(1� 54�r2(n))n�2+ (1� 2�r2(n))n�2�:Using Lemmas 2.1 and 2.2, we get that for �r2(n) = logn+cn , and for any�xed � < 1 and � > 0,P (1)(n; r(n)) � �e�c � n(n� 1)�3�r2(n)e� 54 (n�2)�r2(n) + e�2(n�2)�r2(n)�� �e�c � (1 + �)e�2c;
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Critical Power for Asymptotic Connectivity in Wireless Networks vifor all n > N (�; �; c). Since P (1)(n; r(n)) � Pd(n; r(n)), we havePd(n; r(n)) � �e�c � (1 + �)e�2c; (1.10)for all n > N (�; �; c). Now, consider the case where c is a function c(n) withlimn!1 c(n) = �c. Then, for any � > 0, c(n) � �c+ � for all n � N 0(�). Also,the probability of disconnectedness is monotone decreasing in c. HencePd(n; r(n)) � �e�(�c+�) � (1 + �)e�2(�c+�):for n � maxfN (�; �; �c+ �); N 0(�)g. Taking limitslim infn!1 Pd(n; r(n)) � �e�(�c+�) � (1 + �)e�2(�c+�):Since this holds for all � > 0 and � < 1, the result follows. 2Corollary 2.1 Graph G(n; r(n)) is asymptotically disconnected with posi-tive probability if �r2(n) = logn+c(n)n and lim supn c(n) < +1.3 Su�cient Condition on r(n) for ConnectivityIn order to derive a lower bound on r(n) so as to ensure asymptotic con-nectivity in G(n; r(n)), we make use of some results from continuum per-colation (Meester and Roy (1996)). In percolation theory, nodes are as-sumed to be distributed with Poisson intensity � in <2 (results are infact available for more general cases, see Meester and Roy (1996)). As inG(n; r(n)), two nodes are connected to each other if the distance betweenthem is less than r(�). Let GPoisson(�; r(�)) denote the resultant (in�nite)graph. Also, let qk(�; r(�)) be the probability that the node at the ori-gin is a part of an order-k component. Of course for this to make sense,the node distribution process is conditioned on the origin having a node.Then, (1�P1k=1 qk(�; r(�))) =: q1(�; r(�)) gives the probability that theorigin is connected to an in�nite-order component. It can be shown thatalmost surely GPoisson(�; r(�)) has at most one in�nite-order componentfor each � � 0 (Theorem 6.3 of Meester and Roy (1996)). Furthermore, thefollowing is true (Propositions 6.4-6.6 of Meester and Roy (1996))lim�!1 1q1(�; r(�)) 1Xk=1 qk(�; r(�)) = 1: (1.11)Hence, as �!1, almost surely the origin in GPoisson(�; r(�)) lies in eitheran in�nite-order component or an order-1 component (i.e., it is isolated).Now, our original problem concerning a �xed number of nodes n in the unit-area disc D can be approximated by regarding that process as the restric-tion to D of the Poisson process on <2 with � = n. Let the graph obtained
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Critical Power for Asymptotic Connectivity in Wireless Networks viiby restricting GPoisson(n; r(n)) toD be denoted by GPoissonD (n; r(n)). Then,by the above observation, the probability that GPoissonD (n; r(n)) is discon-nected, denoted by PPoissond (n; r(n)), is asymptotically the same as theprobability that it has at least one isolated node, denoted by PPoisson;(1)(n; r(n)). Although GPoissonD (n; r(n)) has a Poisson(n) number of nodes inD, the di�erence between GPoissonD (n; r(n)) and G(n; r(n)) is negligible forlarge n. This is made precise below.Lemma 3.1 If �r2(n) = logn+c(n)n , thenlim supn!1 PPoisson;(1)(n; r(n)) � e�c; (1.12)where c = limn!1 c(n).Proof: Note that since e�nnjj! is the probability that GPoissonD (n; r(n)) hasj nodes, and de�ning a graph with 0 nodes to be connected, we havePPoisson;(1)(n; r(n)) = 1Xj=1P (1)(j; r(n))e�nnjj! : (1.13)Let E1(j; r(n)) denote the expected number of order-1 components in G(j;r(n)). ThenP (1)(j; r(n)) � E1(j; r(n))= E[ jXi=1 I(i is isolated in G(j; r(n)))]= jP (fj is isolated in G(j; r(n))g)� j(1� �r2(n))j�1: (1.14)Substituting (1.14) in (1.13), we getPPoisson;(1)(n; r(n)) � 1Xj=1 j(1 � �r2(n))j�1e�nnjj!= n 1Xj=0(1� �r2(n))je�nnjj!= ne�n�r2(n); (1.15)from which the result follows. 2The following must be a known fact though we are not aware of any refer-ence for it.
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Critical Power for Asymptotic Connectivity in Wireless Networks viiiLemma 3.2 For all � > 0 and su�ciently large nnXj=1 e�nnjj! � (12 � �): (1.16)We are now ready to give a su�cient condition on r(n) for asymptoticconnectivity in G(n; r(n)).Theorem 3.1 If �r2(n) = logn+c(n)n and limn!1 c(n) = c, thenlim supn!1 Pd(n; r(n)) � 4e�c: (1.17)Proof: By (1.11) and the observation made thereafter, we get that, for any� > 0 and for all su�ciently large n,PPoissond (n; r(n)) � (1 + �)PPoisson;(1)(n; r(n)): (1.18)Note that PPoissond (n; r(n)) = 1Xj=1Pd(j; r(n))e�nnjj! : (1.19)For a �xed range r = r(n), we havePd(k; r) � P (fnode k is isolated in G(k; r)g) + Pd(k � 1; r):which after recursion gives, that for 0 < j < n,Pd(n; r(n)) � nXk=j+1P (fnode k is isolated in G(k; r(n))g) + Pd(j; r(n))� nXk=j+1(1 � �r2(n))k�1 + Pd(j; r(n))� (1� �r2(n))j�r2(n) + Pd(j; r(n)): (1.20)Substituting (1.20) in (1.19), we getPPoissond (n; r(n)) � Pd(n; r(n)) nXj=1 e�nnjj! � n�1Xj=1 (1� �r2(n))j�1�r2(n) e�nnjj!� Pd(n; r(n))(12 � �)� e�n�r2(n)�r2(n) ; (1.21)where we have used Lemma 3.2. Using (1.18), we getPd(n; r(n)) � 2(1 + 4�)"PPoisson;(1)(n; r(n)) + e�n�r2(n)�r2(n) # : (1.22)
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Critical Power for Asymptotic Connectivity in Wireless Networks ixFor the given �r2(n) = logn+c(n)n , from Lemma 3.1, we get that, for any�xed � > 0, the following holds for all su�ciently large nPd(n; r(n)) � 2(1 + 4�) �e�c(n) + e�c(n)logn+ c(n)� :Thus, since � > 0 is arbitrary,lim supn!1 Pd(n; r(n)) � 2e�c: (1.23)2The following is an obvious consequence of Theorem 3.1.Corollary 3.1 Graph G(n; r(n)) is asymptotically connected with proba-bility one for �r2(n) = logn+c(n)n if c(n)! +1.Combining Corollaries 2.1 and 3.1, we get the main result of the paper.Theorem 3.2 Graph G(n; r(n)), with �r2(n) = logn+c(n)n is connectedwith probability one as n!1 if and only if c(n)! +1.4 Concluding RemarksWe have derived the critical range of nodes placed randomly in a disc ofunit area, for the resulting network to be connected with probability one asthe number of nodes tends to in�nity (cf. Theorem 3.2). One can considerthe following extensions of the problem discussed in this paper:� Our lower and upper bounds on Pd(n; r(n)) are not tight. A morere�ned argument may lead to bounds which hold for all n. In par-ticular, we believe that for �r2(n) = logn+c(n)n , Pd(n; r(n)) ! 1 ifc(n)!�1.� Consider the following generalization of the problem: Even if a nodehas another node in its range, it can communicate with that node withprobability p(n); 0 � p(n) � 1. The quantity p(n) can be regardedas the reliability of a link, and is tantamount to Bernoulli deletion ofedges in G(n; r(n)). Our conjecture is that Theorem 3.2 is true with�r2(n) replaced by �r2(n)p(n). This conjecture holds for at leasttwo special cases: �r2(n) � 4 (i.e., range of each node includes D)and p(n) arbitrary in [0; 1] (Theorem VII.3 in Bollob�as (1985)), andr(n) arbitrary and p(n) � 1 (cf. Theorem 3.2). As in the proof ofTheorem 3.1, continuum percolation theory results can be used toobtain su�cient conditions on �r2(n)p(n). Clearly, Theorem 2.1 stillholds. However, stronger necessary conditions need to be worked out.
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Critical Power for Asymptotic Connectivity in Wireless Networks x� A much harder problem to analyze is when nodes are not placedindependently in the disc D. For example, nodes may be placed inclusters, with a speci�ed probability distribution on the size of acluster.Acknowledgments: We would like to thank Prof. T. Seidman for some help-ful discussions, and Prof. V. Ananthram for pointing out the referenceMeester and Roy (1996) to us. The material presented here is based uponwork supported in part by the Air Force of Scienti�c Research under Con-tract No. AF-DC-5-36128, and in part by the U.S. Army Research O�ceunder Contract No. DAAH-04-95-1-0090. Any opinions, �ndings, and con-clusions or recommendations expressed in this publication are those of theauthors and do not necessarily reect the views of AFOSR or USARO.ReferencesBambos, N., Chen, S. and Pottie, G. (1995) \ Radio link admission algo-rithms for wireless networks with power control and active link qualityprotection," in Proc. IEEE INFOCOM, Boston, MA.Bollob�as, B. (1985). Random Graphs, Academic Press, Orlando, FL.Hall, P. (1988). Introduction to the Theory of Coverage Processes, JohnWiley & Sons, New York.Kesten, H. (1982). Percolation Theory for Mathematicians, Birkh�auser,Boston, MA.Gupta, P. and Kumar, P. R. (1997). \A system and tra�c dependent adap-tive routing algorithm for ad hoc networks," in Proc. IEEE 36th Conf.on Decision and Control, San Diego, pp2375-2380.Johnson, D. and Maltz, D. (1996). \Dynamic source routing in ad hoc wire-less networks," inMobile Computing (ed. T. Imielinski and H. Korth),Kluwer Academic Publishers, Dordrecht, The Netherlands.Meester, R. and Roy, R. (1996). Continuum Percolation, Cambridge Uni-versity Press, Cambridge, UK.Ulukus, S. and Yates, R. (1996). \Stochastic power control for cellular ra-dio systems," Preprint.
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(i) (ii)FIGURE 1. Two cases for evaluating P (fn is isolated in G(n; r(n)g).1 AppendixHere we give the complete proofs of the theorems given in the main bodyof the paper, taking the edge e�ects into account.Proof of Theorem 2.1:As before, we �rst study the case where �r2(n) = logn+cn for a �xed c. Con-sider P (1)(n; r(n)), the probability that G(n; r(n)) has at least one order-1component. Then, as argued in (1.8), we haveP (1)(n; r(n)) � nXi=1 P (fi is isolated in G(n; r(n))g)� nXi=1Xj 6=i P (fi and j are isolated in G(n; r(n))g): (.24)Now, let us consider each sum in (.24) separately. For this purpose, de�nethe notationN (1)(G) := fi 2 G : i is an isolated node in Gg;Do := fx 2 D : kxk � 1p� � r(n)g;@D := D �Do: (.25)Then, as illustrated in Figure 1, we need to consider two cases to evaluatethe probability that node n is isolated, namely: When xn 2 Do (recall thatxn is the position of node n in D), and when xn 2 @D. To obtain a lowerbound, we consider only the �rst case, i.e.,nXi=1 P (fi is isolated in G(n; r(n))g) = nP (fn is isolated in G(n; r(n)g)
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Critical Power for Asymptotic Connectivity in Wireless Networks xii� nP (fxn 2 Do, n 2 N (1)(G(n; r(n)))g)= n�( 1p� � r(n))2(1� �r2(n))n�1:Using Lemma 2.2, we see that for any � < 1, when n is su�ciently large,nXi=1 P (fi is isolated in G(n; r(n)g) � �e�c: (.26)Next, consider the second sum in (.24), which in the notation of (.25) canbe written asnXi=1Xj 6=i P (fi; j 2 N (1)(G(n; r(n)))g)= nXi=1Xj 6=i �P (fi; j 2 N (1)(G(n; r(n))); and xi or xj 2 @Dg)+ P (fi; j 2 N (1)(G(n; r(n))); and xi; xj 2 Dog)�� n(n� 1)�2P (fn; n� 1 2 N (1)(G(n; r(n))); and xn 2 @Dg)+ P (fn; n� 1 2 N (1)(G(n; r(n))), and xn; xn�1 2 Dog)�: (.27)The �rst term can be written as2n(n� 1)P (fn; n� 1 2 N (1)(G(n; r(n))); and xn 2 @Dg)= 2n(n� 1) �P (fn 2 N (1)(G(n; r(n))), and xn 2 @Dg) �P (fn� 1 2 N (1)(G(n; r(n)))���n 2 N (1)(G(n; r(n))); xn 2 @Dg): (.28)Now nP (fn 2 N (1)(G(n; r(n))), and xn 2 @Dg) can be evaluated using Fig-ure 2, to givenP (fn 2 N (1)(G(n; r(n))), and xn 2 @Dg) � n r(n)Z0 �1��� � cos�1 yr(n)� r2(n) + E(y)�n�1 2�( 1p� � y)dy; (.29)where E(y) � 2r(n) � 1p� �r 1� � r2(n)!� 2r(n) �� 1p� � 1p� �1� �r2(n)��= 2p�r3(n): (.30)
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(i) (ii)FIGURE 2. Evaluating nP (fn 2 N (1)(G(n; r(n))), and xn 2 @Dg): (i) Shadedarea gives a lower bound on the area which nodes 1; 2; : : : ; n � 1 should notlie in for node n to be isolated, when n is at a distance of y from the boundaryof D, and (ii) Area within the rectangle is an upper bound on the error E(y) dueto approximation of the portion of the disc D within the range of node n by itstangent.Substituting (.30) in (.29), and changing the variable to � = cos�1 yr(n) ,we getnP (fn 2 N (1)(G(n; r(n))), and xn 2 @Dg)� n �2Z0 �1� (� � �)r2(n) + 2p�r3(n)�n�1 2p�r(n) sin �d�� n � 2p�r(n) �2Z0 e�(n�1)((���)r2(n)�2p�r3(n)) ej� � e�j�2j d�= 2p�nr(n)e�(n�1)(�r2(n)�2p�r3(n)) �e(n�1)�2 r2(n)(n � 1)r2(n) + 1((n � 1)r2(n))2 + 1 : (.31)For the given �r2(n) = logn+cn , we thus havenP (fn 2 N (1)(G(n; r(n))), and xn 2 @Dg)� 4�ne�(n�1)(�2 r2(n)�2p�r3(n))(n � 1)p�r(n)� 4(1 + �)�e� c2plogn ; (.32)
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(a) (b)FIGURE 3. Evaluating P (fn; (n� 1) 2 N (1)(G(n; r(n))), and xn; xn�1 2 Dog).Note that h2 = r2(n)� � y2�2.for any � > 0 and su�ciently large n. The remaining factor in (.28) can beevaluated as2(n� 1)P (fn� 1 2 N (1)(G(n; r(n)))���n 2 N (1)(G(n; r(n))); xn 2 @Dg)= 2(n� 1)�P (fn� 1 2 N (1)(G(n; r(n))); xn�1 2 @D���n 2 N (1)(G(n; r(n))); xn 2 @Dg) + P (fn� 1 2 N (1)(G(n; r(n)));xn�1 2 Do���n 2 N (1)(G(n; r(n))); xn 2 @Dg)�� 2(n� 1)�2p�r(n)(1� �r2(n) + 2E(0))n�2+ (1� 32�r2(n) + E(0))n�2�; (.33)where E(�) is de�ned in (.30). For the given �r2(n) = logn+cn , we thus have2(n� 1)P (fn� 1 2 N (1)(G(n; r(n)))���n 2 N (1)(G(n; r(n))); xn 2 @Dg)� 4(1 + �)r lognn ; (.34)for any � > 0 and all su�ciently large n. Substituting (.32) and (.34) in(.28), we get2n(n� 1)P (fn; n� 1 2 N (1)(G(n; r(n))); and xn 2 @Dg)� 4(1 + �)�e� c2plogn � 4(1 + �)r lognn
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Critical Power for Asymptotic Connectivity in Wireless Networks xv� 16(1 + �0)�e� c2pn ; (.35)for any �0 > 0 and all su�ciently large n. The second term in (.27) is (asillustrated in Figure 3),n(n� 1)P (fn; (n� 1) 2 N (1)(G(n; r(n))), and xn; xn�1 2 Dog)� n(n� 1)P (fxn 2 Dog) � hP (fr(n) < jxn � xn�1j � 2r(n); jxi � xj j> r(n); 1 � i � n� 2; j = n; n� 1g���xn 2 Do) + P (f2r(n) < jxn�xn�1j; jxi� xjj > r(n); 1 � i � n� 2; j = n; n� 1g���xn 2 Do)i� n(n� 1)�( 1p� � r(n))2 �264 2r(n)Zr(n) �1� 2�r2(n) + ��r2(n)� y24 ��n�2 2�ydy++ �1� �r2(n)� �1� 2�r2(n)�n�2i� n(n� 1)264 2r(n)Zr(n) e�(n�2)�(r2(n)+ y24 )2�ydy + (1� 2�r2(n))n�2375� n(n� 1) �e�(n�2)�r2(n) 4n� 2e� (n�2)�y24 ���r(n)2r(n) + e�(n�2)2�r2(n)�� n(n� 1) � 4n� 2e�(n�2)54�r2(n) + e�(n�2)2�r2(n)�� n(n� 1)(1 + �00)e�(n�2)2�r2(n)� (1 + �0)e�2c; (.36)for any �0 > 0, the given �r2(n) = logn+cn and all su�ciently large n.Substituting (.35) and (.36) in (.27), we getnXi=1 nXj 6=i P (fi and j are isolated in G(n; r(n))g)� 16�(1 + �00)pn e� c2 + (1 + �0)e�2c� (1 + �)e�2c: (.37)for any � > 0 and all su�ciently large n. Substituting (.26) and (.37) in(.24), we get P (1)(n; r(n)) � �e�c � (1 + �)e�2c;
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Critical Power for Asymptotic Connectivity in Wireless Networks xvifor all n > N (�; �; c). Since P (1)(n; r(n)) � Pd(n; r(n)), we havePd(n; r(n)) � �e�c � (1 + �)e�2c; (.38)for all n > N (�; �; c). Now, consider the case where c is a function c(n) withlimn!1 c(n) = �c. Then, for any � > 0, c(n) � �c+ � for all n � N 0(�). Also,the probability of disconnectedness is monotone decreasing in c. HencePd(n; r(n)) � �e�(�c+�) � (1 + �)e�2(�c+�):for n � maxfN (�; �; �c+ �); N 0(�)g. Taking limitslim infn!1 Pd(n; r(n)) � �e�(�c+�) � (1 + �)e�2(�c+�):Since this holds for all � > 0 and � < 1, the result follows. 2Proof of Lemma 3.1:As before, PPoisson;(1)(n; r(n)) = 1Xj=1P (1)(j; r(n))e�nnjj! : (.39)LetE1(j; r(n)) denote the expected number of order-1 components in G(j; r(n)).Then P (1)(j; r(n)) � E1(j; r(n))= E[ jXi=1 I(i is isolated in G(j; r(n)))]= jP (fj is isolated in G(j; r(n))g): (.40)Using the de�nitions of N (1)(G);Do and @D given in (.25), we can writeP (fj is isolated in G(j; r(n))g)= P (fj 2 N (1)(G(j; r(n))) and xj 2 Dog)+ P (fj 2 N (1)(G(j; r(n))) and xj 2 @Dg): (.41)>From (.31) and (.41) , we getP (1)(j; r(n)) � jP (fj is isolated in G(j; r(n))g)� j�� 1p� � r(n)�2 �1� �r2(n)�j�1 + 2p�jr(n) �e�(j�1)f1(r(n)) e(j�1)f2(r(n))(j � 1)r2(n) + 1((j � 1)r2(n))2 + 1 ; (.42)
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Critical Power for Asymptotic Connectivity in Wireless Networks xviiwhere f1(r) = �r2 � 2p�r3, and f2(r) = �r2=2. From (.39) and (.42), wegetPPoisson;(1)(n; r(n)) � 1Xj=1 jP (fj is isolated in G(j; r(n))g)e�nnjj! (.43)� 1Xj=1 j(1 � �r2(n))j�1e�nnjj! + 2p�r(n)e�n n1!+ 2p�r(n) 1Xj=2 j "e�(j�1)(f1(r(n))�f2(r(n)))(j � 1)r2(n) + e�(j�1)f1(r(n))((j � 1)r2(n))2# e�nnjj!� n 1Xj=0(1� �r2(n))je�nnjj! + 2p�r(n)ne�n+ 2p�r(n) 1Xj=2 jj � 1 e�(j�1)(f1(r(n))�f2(r(n)))njj! e�n+ 2p�r3(n) 1Xj=2 jj � 1 j + 1j � 1 e�(j�1)f1(r(n))nj(j + 1)! e�n� ne�n�r2(n) + 2p�r(n)ne�n + 2p�r(n) 2ef1(r(n))�f2(r(n)) ��ene�(f1(r(n))�f2 (r(n)))e�n + 2p�r3(n) 2 � 3e2f1(r(n))n ene�f1(r(n))e�n� ne�n�r2(n) + 2p�r(n)ne�n + 4p�r(n) e�(n�1)(f1(r(n))�f2(r(n))) ��en(f1(r(n))�f2 (r(n)))22 + 12p�nr3(n)e�(n�2)f1(r(n))enf21 (r(n))2 ; (.44)where we have used e�x � 1 � x + x22 . For the given �r2(n) = logn+c(n)n ,we thus havePPoisson;(1)(n; r(n)) � e�c(n) + 2pn(logn+ c(n))e�n + 4�(1 + �)e�c(n)plogn+ c(n)+ 12�2(1 + �)pn(logn+ c(n))3 e�c(n); (.45)for any � > 0 and all su�ciently large n. The result follows. 2Proof of Lemma 3.2:By Chebyshev's inequality, we have that for any �1Xj=n+n�+1 e�nnjj! � nn2� :
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Critical Power for Asymptotic Connectivity in Wireless Networks xviiiLet � = 12 + � for some � > 0, then1Xj=n+n�+1 e�nnjj! � 1n2� : (.46)Also, n+n�Xj=n+1 e�nnjj! = n�Xj=1 e�n nn+j(n+ j)!= n�Xj=1 e�n nn�j�1(n� j � 1)! � 1jQi=0�1� � in�2�� 0@ n�Xj=1 e�n nn�j�1(n� j � 1)!1A �max1�j�n� 1jQi=0�1� � in�2� : (.47)Now, max1�j�n� 1jQi=0�1� � in�2� � max1�j�n� 11� jPi=1 � in�2= 11� n�Pi=1 � in�2= 11� n�(n�+1)(2n�+1)6n2� 11� (1+�0)n3�� 123 ; (.48)for the chosen � = 12+�, any �0 > 0 and all su�ciently large n. Substituting(.48) in (.47), we getn+n�Xj=n+1 e�nnjj! � 0@ n�Xj=1 e�n nn�j�1(n� j � 1)!1A � 1 + 2(1 + �0)n3��123 !� 0@ nXj=1 e�nnjj!1A � 1 + 2(1 + �0)n3��123 ! : (.49)
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Critical Power for Asymptotic Connectivity in Wireless Networks xix>From (.46), (.49) and the fact that 1Pj=0 e�nnj=j! = 1, we get thatnXj=1 e�nnjj! � 1� e�n � 1n2�1 + 1 + 2(1+�0)n3��123� 12 � �00;for any � < 16 , �00 > 0 and all su�ciently large n. 2Proof of Theorem 3.1:By (1.11) and the observation made thereafter, we get that, for any � > 0and for all su�ciently large n,PPoissond (n; r(n)) � (1 + �)PPoisson;(1)(n; r(n)): (.50)Note that PPoissond (n; r(n)) = 1Xj=1Pd(j; r(n))e�nnjj! : (.51)For a �xed range r = r(n), we havePd(k; r) � P (fnode k is isolated in G(k; r)g) + Pd(k � 1; r):which after recursion gives, that for 0 � j < nPd(n; r(n)) � nXk=j+1P (fnode k is isolated in G(k; r(n))g)+ Pd(j; r(n)): (.52)Substituting (.52) in (.51), we getPPoissond (n; r(n))� Pd(n; r(n)) nXj=1 e�nnjj!� n�1Xj=1 nXk=j+1P (fk is isolated in G(k; r(n))g)e�nnjj!� Pd(n; r(n))(12 � �)� nXk=2P (fk is isolated in G(k; r(n))g) k�1Xj=1 e�nnjj!� Pd(n; r(n))(12 � �)� nXk=2P (fk is isolated in G(k; r(n))g)ke�nnkk! ;
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Critical Power for Asymptotic Connectivity in Wireless Networks xxwhere we have used Lemma 3.2 and the fact that e�n nkk! increases with k,for 1 � k � n. Using (.50), we getPd(n; r(n)) � 2(1 + 6�)�PPoisson;(1)(n; r(n))+ 1Xk=1 kP (fk is isolated in G(k; r(n))g)e�nnkk! �:For the given �r2(n) = logn+c(n)n , and from Lemma 3.1, and (.43) we getthat for any � > 0,Pd(n; r(n)) � 2(1 + 6�)2 � (1 + �0)e�c(n):holds for all su�ciently large n. Thus,lim supn!1 Pd(n; r(n)) � 4(1 + �00)e�c:Since �00 can be made arbitrarily small, the result follows. 2Authors' A�liations:Coordinated Science Laboratory, andDepartment of Electrical & Computer EngineeringUniversity of Illinois at Urbana-Champaign1308 West Main St, Urbana, IL 61801-2307, USA.Email: piyush@decision.csl.uiuc.edu, prkumar@decision.csl.uiuc.edu


